Machine Learning is the backbone of today’s insights on customer, products, costs and revenues which learns from the data provided to its algorithms. And hence algorithms are the next most important thing in data science after data.
Hence , the question which algorithm to use ? Some of the most used algorithms and their use cases are as follow :

1) Decision Trees - It’s output is easy to understand and can be used for Investment decision ,Customer churn ,Banks loan defaulters,etc.

2) Logistic Regression - It’s a powerful way of modeling a binomial outcome with one or more explanatory variables and can be used for Predicting the Customer Churn, Credit Scoring & Fraud Detection, Measuring the effectiveness of marketing campaigns, etc. ,

3) Support Vector Machines - It’s a supervised machine learning technique that is widely used in pattern recognition and classification problems and can be used for detecting persons with common diseases such as diabetes, hand-written character recognition, text categorization, etc. ,

4)Random Forest: It’s an ensemble of decision trees and can solve both regression and classification problems with large data sets and used in applications such as Predict patients for high risks, Predict parts failures in manufacturing, Predict loan defaulters, etc.


Hence based on your need and size of your dataset , you can use the algorithm that is best for your application or problem.
You can read the full article by Sandeep Raut at http://www.datasciencecentral.com/profiles/blogs/want-to-know-how-to-choose-machine-learning-algorithm