SigmaWay Blog

SigmaWay Blog tries to aggregate original and third party content for the site users. It caters to articles on Process Improvement, Lean Six Sigma, Analytics, Market Intelligence, Training ,IT Services and industries which SigmaWay caters to

Sample size: Is it important for predictive data analytics?

Sampling error can cause problems if they are not taken care of. Errors in judgment about sample size can be fixed easily and sample sizes must be considered seriously if big data is being used for predictive analysis. A leader trying to use big data in predictive analysis should always consult the data scientist. The way to understand whether enough data has been collected or not for the purpose of prediction involves understanding the tolerance of the risk associated to accept the assumptions drawn from the sample size characteristics. There are two types of risk: the risk that you're going to take some action when you shouldn't and the risk that you are not going to take some action when you should. Also enough information should be available about the sample variation and precision of measurement to know whether enough data has been collected to make prediction. To know more about importance of sample size in predictive analytics, go to John Weathington (President and CEO of Excellent Management Systems, Inc.)'s link: 

Rate this blog entry:
The Evolution of Video Analytics
Map customers path using in-store Wi-Fi network

Related Posts



No comments made yet. Be the first to submit a comment
Already Registered? Login Here
Monday, 20 January 2020
If you'd like to register, please fill in the username, password and name fields.

Sigma Connect

sigmaway forums


Raise a question

Access Now

sigmaway blogs


Blog on cutting edge topics

Read More

sigmaway events


Hangout with us

Learn More

sigmaway newsletter


Start your subscription

Signup Now

Sign up for our newsletter

Follow us